MW24.2 Experimental Economics (SS2022) Public Goods Game

Olexandr Nikolaychuk

Public Good Problem

- * non-rival (of consumption) \sim property of a commodity s.t. its consumption by one individual does *not* diminish the amount available to others
- * non-excludable \sim property of a commodity s.t. no individual can be prevented from consuming it

	Non-excludable	Excludable
Non-rival	(pure) public $good^a$	club $good^b$
Rival	common-pool resource ^{c}	private $good^d$

Examples:

a) national defense	b) coded broadcast
---------------------	--------------------

c) public park d) for

Private good:

 \Rightarrow all costs and benefits are *internalized*; hence free markets provide at the optimal level (~efficient markets hypothesis)

Public good:

- * because of non-excludability, there is a *positive externality* enjoyed by those who did not pay for the production
- \Rightarrow not all benefits are internalized; hence the producer(s) will generally underprovide in free markets
- \Rightarrow in reality, typically provided by the government (supported by taxes)
- (?) can the *voluntary contribution mechanism* (VCM) provide the optimal level of a public good?

VCM / Linear Public Goods Game

- * Simultaneous-move, *n*-person game. Each player *i* is endowed with a budget of *y* and must split it between contribution to the public account g_i , s.t. $0 \le g_i \le y$, and his private consumption $y-g_i$. Once all the contributions have been made, each player receives the total sum multiplied by a factor of *a*, s.t. $a \in (\frac{1}{n}, 1)$.
- * individual payoff:

$$\pi_i(g_i, ..., g_n) = y - g_i + a \cdot \sum_{j=1}^n g_j,$$

where: $a \sim \text{marginal per capita return (MPCR)}$ $\sum_{j=1}^{n} g_j \sim \text{total amount of the public good produced}$

- \Rightarrow dominant strategy: contribute *nothing* since a < 1 (i.e., free ride)
- \Rightarrow social optimum: contribute *everything* since $n \cdot a > 1$
- \Rightarrow essentially, it's an *n*-player continuous space Prisoner's Dilemma

Marwell and Ames [1981]

- * telephone/mail public goods game [Table 1]
- * predictions from six prominent economists and one sociologist:
 - one economist said, theory had no relevant predictions!
 - the rest said, theory predicts investments under 5%, but themselves predicted $\sim 20\%$ on average ("people like taking risks"/altruism)
- \Rightarrow 12 various manipulations confirm the weak free riding hypothesis; 40–60% contributed on average [Table 2]
- \Rightarrow more than three out of every four subjects stated that "about half" or more should be contributed
- \Rightarrow more than one out of every four subjects considered it "fair" to contribute everything
- \Rightarrow correlation of only 0.23 between what was considered "fair" and actual investment

Goeree et al. [2002]

- * comparative statics of VCM w.r.t. MPCR and group size
- * individual payoff:

$$\pi_i(g_i, ..., g_n) = y - g_i + a_i \cdot g_i + a_{-i} \cdot \sum_{j \neq i}^n g_j,$$

where: $a_i \sim \text{internal return}$ $a_{-i} \sim \text{external return}$

- $\sim\,$ decompose MPCR: private cost of contribution versus value of own contribution to others
- * within-subject design; 10 treatments; random rematching; strategy method [Table 1]
- * endowment of 25 tokens; private account pays 5; internal return < 5; social return > 5 [Table 1]

Results: [Fig. 1]

- \Rightarrow higher internal return increases contributions
- \Rightarrow higher external return increases contributions
- \Rightarrow larger group size increases contributions
- \Rightarrow contributions respond to the aggregate benefit
- \Rightarrow stochastic model fit to the data favors linear altruism as opposed to "warmglow" altruism or mix between the two; no evidence of pure altruism [Fig. 3]
- \Rightarrow men and women appear to have the same average levels of altruism but the latter distribution is more 'compact' [Fig. 2]

Fischbacher et al. [2001]

- * one-shot public goods game; strategy method for conditional contributions
- (?) are people *conditionally* cooperative?
 - * 4-person group; 20 tokens; 0.4 MPCR
 - * conditional stage: average contribution known \rightarrow strategy elicited Results: [Fig. 1]
- \Rightarrow 50% of the subjects are conditionally cooperative
- \Rightarrow 30% of the subjects are free riders
- \Rightarrow 14% of the subjects exhibit "hump-shaped" contribution patterns
- \Rightarrow average behavior is conditionally cooperative
- \Rightarrow conditional cooperators exhibit a *self-serving bias*, which may explain the deteriorating contributions in repeated settings¹

Croson [1996]

- * Repeated public goods game; partners versus strangers
- * 10 + 10 periods; between-subject design
- (?) Do contributions deteriorate over time due to learning (to play the free-riding equilibrium) or strategic reasoning à la Kreps et al. [1982]?
 - * 4-person group; 25 tokens; 0.5 MPCR; aggregate contribution known

Results: [Fig. 1]

- \Rightarrow contributions are dropping over time and appear to converge as far as the treatments
- \Rightarrow partners' contributions dominate those of the strangers
- \Rightarrow significant restart effect for the partners
- \Rightarrow "strategies hypothesis" consistent with the data
- \Rightarrow partners exhibit higher variance as far as individual contributions

¹Common finding in the literature, similar to the repeated Prisoner's Dilemma play.

Suggested Literature

- Charles A Holt. *Markets, games, & strategic behavior*. Boston Pearson Addison Wesley, 2007 [Chapter 26]
- Gerald Marwell and Ruth E. Ames. Economists free ride, does anyone else?: Experiments on the provision of public goods, iv. *Journal of Public Economics*, 15(3):295–310, 1981
- Jacob Goeree, Charles Holt, and Susan Laury. Private costs and public benefits: unraveling the effects of altruism and noisy behavior. *Journal of Public Economics*, 83(2):255–276, 2002
- Urs Fischbacher, Simon Gächter, and Ernst Fehr. Are people conditionally cooperative? evidence from a public goods experiment. *Economics Letters*, 71(3):397–404, 2001
- Rachel Croson. Partners and strangers revisited. *Economics Letters*, 53(1): 25–32, 1996
- * Ernst Fehr and Simon Gachter. Cooperation and punishment in public goods experiments. *American Economic Review*, 90(4):980–994, September 2000