MW24.2 Experimental Economics (SS2021) Probability Judgment

Olexandr Nikolaychuk

2. Conjunction Fallacy

Linda problem [Tversky and Kahneman, 1983]

Linda is 31 years old, single, outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

By probability, rank the following statements:

Linda is a teacher in elementary school.

Linda works in a bookstore and takes Yoga classes.

Linda is active in the feminist movement. (F)

Linda is a psychiatric social worker.

Linda is a member of the League of Women Voters.

Linda is a bank teller. (T)

Linda is an insurance salesperson.

Linda is a bank teller and is active in the feminist movement. $(T \cap F)$

⇒ 85% of UBC undergraduates rank $P(F) > \underline{P(T \cap F) > P(T)}$, which violates the *conjunction rule*:

$$P(T \cap F) \le P(T)$$

- \Rightarrow similar results for the Bill problem (representative of an accountant, not of a jazz music player)
- \Rightarrow sophistication (e.g., statistics background, M.A. degree) plays no role
- \Rightarrow "transparent" version with only T and $T \cap F$ results in 85% violation
- \Rightarrow sophistication helps bring down the error rate to 36% in the "transparent" version
- (T^{*}) Linda is a bank teller whether or not she is active in the feminist movement $\Rightarrow 57\%$ rank $P(T \cap F) > P(T^*)$; only 16% rank $P(T \cap F) < P(T^*)$

Linda problem [continued]:

Tversky and Kahneman [1983] suggest that the subjects commit the error because of *representativeness*.

- \Rightarrow 65% of the subjects find *B* more convincing:
 - A: Linda is more likely to be a bank teller than she is to be a feminist bank teller, because every feminist bank teller is a bank teller, but some women bank tellers are not feminists, and Linda could be one of them.
 - B: Linda is more likely to be a feminist bank teller than she is likely to be a bank teller, because she resembles an active feminist more than she resembles a bank teller.

Also, $T \cap F$ versus T^* takes care of the linguistic argument that the subjects might construe that T implies F^{-1} .

Overall, the subjects appear to notice the nested nature of the target events but do not appreciate its significance for probability assessment. The violation rate is somewhat lower (56%) if the subjects are incentivized to bet on the events, though.

Charness et al. [2010]:

- * "transparent" version of the Linda problem
- * incentives¹/none × individual/duo/trio judgment
- (!) no psychology students in the sample
- \Rightarrow error rate of only 58% in the worst case [Table 1]
- \Rightarrow incentives have a positive effect: error rate goes down to 33% for individuals
- \Rightarrow consultation has a positive effect: error rates of 48% and 26%, respectively
- \Rightarrow incentives reinforce the consultation effect: error rates of 13% and 10%, respectively
- \Rightarrow removing the word "single" from the vignette lowered the individual error rates to 36% and 28% \leftarrow consistent with the representativeness hypothesis!

 $^{^1\}mathrm{In}$ that treatment, the subjects were also told that there indeed was a correct answer to the question.

3. Monty Hall Problem

There are three doors with a prize hidden behind one of them. The subject chooses one door. The experimenter then opens one of the other two (without the prize behind it).

- (?) would you like to switch to the *other* unopened door?
- ⇒ rational decision maker *switches*² thus increasing the probability of winning the prize from $\frac{1}{3}$ to $\frac{2}{3}$:

pick	•	•	stay	swtich
\vee	Ø	Ø	win	lose
Ø	\vee	Ø	lose	win
Ø	Ø	\vee	lose	win

Friedman [1998]:

Run 1: classic version of the problem

- * individual decision problem with cards; 10 repetitions
- * prize of 40 cents versus 10 cents otherwise
- \Rightarrow 28.7% switches overall; start at < 10%; stagnate at ~40% [Fig. 1]

Possible explanations:

- * illusion of control
- * non-rational escalation of commitment (e.g., sunk cost or endowment effect)
- * misinterpretation of the *non*-random nature of the information process
- * probability matching

 $\operatorname{Run}\,2$

- * additional 12–15 repetitions
- * one or more of the following treatments:
 - (a) intense incentives of +100 and -50 cents
 - (b) track performance of always/never switching
 - (c) *advice* (found equally persuasive by the subjects) [p. 942]
 - (d) compare: switch $\rightarrow 62\%$ win / not switch $\rightarrow 31\%$ win
- \Rightarrow switching rate starts at < 25% and grows to 40–50% [Fig. 2]
- \Rightarrow (b), (c), (d) have positive effects [Table 2]

²Public media discussion of the rational choice in the Parade magazine (vos Savant, 1990) generated ~ 10 K 'critical' comments with ~ 1 K of those from PhDs.

Suggested Literature

- Amos Tversky and Daniel Kahneman. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. *Psychological Review*, pages 293–315, 1983 [only pages 293–300]
- Gary Charness, Edi Karni, and Dan Levin. On the conjunction fallacy in probability judgment: New experimental evidence regarding linda. *Games and Economic Behavior*, 68(2):551–556, 2010
- Daniel Friedman. Monty Hall's Three Doors: Construction and Deconstruction of a Choice Anomaly. *American Economic Review*, 88(4):933–946, September 1998