MW24.2 Experimental Economics (SS2021) Information Cascades

Olexandr Nikolaychuk

Mechanisms for Uniform Social Behavior

- * sanctioning of deviants
- * positive payoff externalities
- * preferences for conformity
- * communication
- \Rightarrow mass behavior that is *not* fragile (w.r.t. minor external shocks)
- \Rightarrow new members reinforce the phenomenon

Bikhchandani et al. [1992] argue that uniform social behavior is better explained by *social learning* \sim situations where individuals can learn by observing the behavior of others:

 \Rightarrow "information(al) cascade" or "herd(ing) behavior" model(s)

Info cascade \sim situation where it is *optimal* for an individual, having observed the actions of others, to do the same while disregarding his private information

Core assumptions:

- * Bayesian learning
- * incomplete asymmetric information
- * pure information externality
- * once-and-for-all decision
- * exogenously defined sequence of moves

Anderson and Holt [1997] Information Cascade Model

There are two states of the world, A and B. A random sequence of individuals each receive a signal about the state of the world, a or b, and must guess the true state. All decisions, but not signals, are public.

The signal is (i) *imprecise* but (ii) *in*formative:

(i) $P(a|A) = P(b|B) = \frac{2}{3} < 1$

(ii)
$$P(a|A) = P(b|B) = \frac{2}{3} > \frac{1}{3}$$

signal precision:

(ii)
$$P(a|A) = P(b|B) = \frac{2}{3} > \frac{1}{2}$$

$$P(a|A) = P(b|B) = \frac{2}{3}$$

Both states of the world are equally likely *ex ante* and the signals are i.i.d.

 \Rightarrow suitable environment for studying errors in decision making as the players can learn from the decisions of others without any *payoff* interdependencies, and errors (if any) are *recursive*, i.e., past mistakes influence the decisions of future individuals

Normative expectations (for rational Bayesian players):

- 1. The first decision maker has his individual signal only and hence predicts A upon drawing a, and B otherwise.
- 2. If the second decision maker has a non-conflicting signal, he follows suit. Otherwise, his *posterior* belief of the true state being A is equal to $\frac{1}{2}$ as he can *infer* the first signal from the decision of the first agent and has his own (conflicting) signal on top of that. If indifferent, he is assumed to follow his own signal.
- 3. Before observing his own signal, the third decision maker can make the following inference: $AA \rightarrow aa$, $AB \rightarrow ab$, $BA \rightarrow ba$, and $BB \rightarrow bb$. For any (inferred) sequence of two signals that are the same, he then completely *disregards* his own signal if it is different.
- \Rightarrow By induction, an *imbalance of two* decisions in the sequence forces the decision maker to disregard his private signal \rightarrow information cascade starts.

exa)
$$ABB + \begin{cases} a \to ABBA \implies \text{player five will use his signal to decide} \\ b \to AB\underline{BB} \implies \text{player five will have to disregard his signal} \end{cases}$$

- \Rightarrow Individuals rationally take uninformative imitative actions.
- \Rightarrow All the decisions after the cascade develops convey no information about the private signals and as such, are *not informative* of the true state of the world.

 \Rightarrow Cascade is based on information only slightly more informative than a single private signal and as such, is *fragile*.

$$P(A|\#a,\#b) \equiv P(A|n,m) = \frac{P(n,m|A) \cdot P(A)}{P(n,m|A) \cdot P(A) + P(n,m|B) \cdot P(B)} = \frac{(2/3)^n \cdot (1/3)^m}{(2/3)^n \cdot (1/3)^m + (1/3)^n \cdot (2/3)^m} = \frac{2^n \cdot (1/3)^{n+m}}{2^n \cdot (1/3)^{n+m} + 2^m \cdot (1/3)^{n+m}} = \frac{2^n}{2^n + 2^m}$$

Note that $P(A|n,m) \leq \frac{1}{2} \iff n \leq m$. Hence one need not be a perfect Beyasian learner to be in line with the normative prediction but instead, could rely on a *counting* heuristic when making decisions in this setup!

Bikhchandani et al. [1992] general theoretical predictions:

- * reducing signal precision delays the start of a cascade
- * increasing signal precision raises the probability of a *correct* cascade
- * even for relatively precise signals, the probability of an *incorrect* cascade is quite high (e.g., ~ 0.2 for the signal precision of 0.7)
- * cascades will never stop without external shocks
- * if the signals vary in precision, the society is better off with the *least* precise signals used first
- * cascades are *fragile* \sim they don't get stronger with more adopters
- * cascades are *idiosyncratic* \sim their direction depends on the very few early signal realizations
- * public release of information *after* the cascade has developed is always beneficial to the society

Anderson and Holt [1997]

- \sim people need not be Bayesian learners (e.g., they could be using the *counting heuristic* or disregarding public information altogether instead)
- (!) rationality of others is required for the normative predictions
- * 6 decision makers \times 15 repetitions
- * \$2 for a correct prediction and nothing otherwise
- * symmetric and asymmetric urn treatments (to test for counting)

Results:

- \Rightarrow not all decisions are in line with Bayesian learning [Table 2]
- \Rightarrow if following the private signal is not consistent with Bayesian learning, 26% of the subjects go with their private signal
- $\Rightarrow \frac{2}{3}$ of the subjects are consistent with Bayesian learning; another $\frac{2}{9}$ make use of the public information
- \Rightarrow logit model of errors indicates that the subjects "make mistakes" but those are rather small so it is still optimal to follow a cascade
- \Rightarrow 57 out of 68 cases are not consistent with the *status-quo* bias
- \Rightarrow 10 out of 10 cases are not consistent with the *representativeness* bias (note footnote 32 for later)
- \Rightarrow if the Bayes rule and counting heuristic disagree, the former is followed in 41 out of 82 cases [Tables 4–6]
- \Rightarrow if counting makes no prediction, 66% of decisions are consistent with the Bayes rule
- ⇒ overall, 115 out of 540 cases are not consistent with Bayesian learning (asymmetric treatment), with $> \frac{1}{3}$ explained by counting
- \Rightarrow overall, the cascades form in 87 out of 122 cases
- \Rightarrow one third of the cascades is of the reverse (i.e., incorrect) type
- \Rightarrow one third of the subjects tends to rely on the counting heuristic if it disagrees with the Bayes rule

Suggested Literature

- Charles A Holt. *Markets, games, & strategic behavior*. Boston Pearson Addison Wesley, 2007 [Chapter 31]
- Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads, fashion, custom, and cultural change in informational cascades. *Journal of Political Economy*, 100(5):992–1026, 1992
- Lisa Anderson and Charles Holt. Information cascades in the laboratory. American Economic Review, 87(5):847–62, 1997
- * Angela A. Hung and Charles R. Plott. Information cascades: Replication and an extension to majority rule and conformity-rewarding institutions. *American Economic Review*, 91(5):1508–1520, 2001