MW24.2 Experimental Economics (SS2021) Cooperation Games: Prisoner's Dilemma

Olexandr Nikolaychuk

Prisoner's Dilemma

 \Rightarrow originally introduced by Melvin Dresher and Merril Flood (1950) to test the Nash Equilibrium predictions

D

exa) C $2, 2 0, 3^*$ D $*3, 0 *1, 1^*$

-	
C	"cooporato"
U.	cooperate

D: "defect"

c>a>b>d

 $\begin{array}{ll} \{D;D\} & \rightarrow \text{ dominant strategy equilibrium} \\ & \rightarrow \text{ Nash Equilibrium (NE)} \end{array}$

Predictions:

- one-shot \rightarrow defect (NE)
- repeated finite \rightarrow defect (SPNE)
- repeated infinite \rightarrow cooperative play *can* be sustained as equilibrium play
 - \Rightarrow Folk Theorem [Friedman, 1971]¹:
 - * sufficiently patient players
 - * grim trigger strategies

Behavioral Data:

 \Rightarrow significant share of subjects exhibit cooperative behavior [Dawes and Thaler, 1988]²

 $^{^1 {\}rm James}$ W. Friedman. A non-cooperative equilibrium for supergames. The Review of Economic Studies, $38(1){:}1{-}12,\,1971$

²Robyn M. Dawes and Richard H. Thaler. Anomalies: Cooperation. *The Journal of Economic Perspectives*, 2(3):187–197, 1988

Axelrod [1980] Competition(s)

 \Rightarrow How should one play a *repeated* Prisoner's Dilemma?

Some sample strategies:

- always defect
- always cooperate

unconditional; perhaps, not the smartest

- equiprobable randomization
- match what the opponent plays, e.g., on average
- grim trigger (e.g., cooperate until defected)
- "tit-for-tat" (i.e., start by cooperating, then copy what the opponent does)

First Tournament:

- 14 strategies from leading scientists + RANDOM
- each strategy plays against every other (and itself) for 200 rounds \times 5 times

Second Tournament:

- 62 strategies + RANDOM
- infinitely repeated play ($\sim 200 \text{ rounds} \times 5 \text{ times}$)

Ecological Tournament:

- second tournament in an "evolutionary" setting
- all strategies equally represented with the more successful replacing the less successful over 1000 generations [Fig. 1, p. 400]
- \Rightarrow TIT-FOR-TAT is the best throughout (Anatol Rapoport) [Table 2. p. 384]
 - * nice
 * provocable/retaliating
 * forgiving
 Properties of all successful strategies
- (!) not a "solution" to Prisoner's Dilemma, though
 - * would only come in 4^{th} if played the top 50% strategies only
 - * cannot detect RANDOM
 - * won't exploit when given the opportunity
 - * there is no best rule independent of the environment (i.e., the distribution of opponent strategies)

How Do Human Subjects Play Prisoner's Dilemma?

 \Rightarrow Two major perspectives:

Reputation Building [Kreps et al., 1982]³

- (some) players have the *belief* that their opponent is *not* rational but rather is playing some conditionally cooperative strategy (e.g., tit-for-tat)
- cooperation then is more beneficial as that probability $\rightarrow 1$
- \Rightarrow selfish players will cooperate in early rounds!
- \Rightarrow defection is still dominant in the last round as well as in one-shot games!

Altruism Theories

- (some) players are not strictly selfish but benefit from cooperation in a manner *not* reflected in the payoff matrix
- a) pure altruism: $u_i = \pi_i + \delta \cdot \pi_j$ s.t. $\delta > 0$, where u_i is own utility, and π_i and π_j are own and opponent's payoffs, respectively
- b) duty/"warm glow": $u_i = \pi_i + \delta$ s.t. $\delta > 0$ if one chooses to cooperate, and 0 otherwise
- c) reciprocal altruism: $u_i = \pi_i + \delta$ s.t. $\delta > 0$ if both players choose to cooperate, and 0 otherwise
- \Rightarrow a) and b) can support cooperation even in one-shot games by making cooperation either a *best response* or *dominant* strategy

exa) C D D $(a+\delta, a+\delta) (d+\delta, c)$ D $(c, d+\delta) (b, b)$

- * both players can exhibit "warm glow" altruistic behavior potentially
- * based on the actual value of δ , cooperation can be:
 - dominated strategy $\Leftrightarrow \delta < min(b-d, c-a)$
 - best response strategy $\Leftrightarrow min(b-d, c-a) < \delta < max(b-d, c-a)$
 - dominant strategy $\Leftrightarrow \delta > max(b-d, c-a)$

³David M Kreps, Paul Milgrom, John Roberts, and Robert Wilson. Rational cooperation in the finitely repeated prisoners' dilemma. *Journal of Economic Theory*, 27(2):245 - 252, 1982

Cooper et al. [1996]: Reputation Versus Altruism

- \Rightarrow reputation building versus "warm glow" altruism
- one-shot treatment (OST): 20 rounds; perfect stranger matching; 40 subjects
- repeated treatment (RT): 2×10 periods; partner matching; 30 subjects
- between-subject design
- (!) last 10 rounds from OST; 10 rounds of practice (one-shot) in RT

[Table 1 and Fig. 1, p. 199]

- $\Rightarrow\,$ cooperation rates are positive and generally declining over time in both treatments
- \Rightarrow cooperation rates in RT are higher than in OST
- \Rightarrow neither theory can describe all of the data

[Fig. 2, p. 201]

- ⇒ most of cooperative play in OST comes from the subjects who do not cooperate all the time → best response altruism
- ⇒ 12.5~15% are altruists (i.e., cooperate more than 50% of the time); 62.5~85% are selfish

[Fig. 3, p. 205]

- \Rightarrow actual cooperation rates in RT follow a concave pattern while reputation building predicts a convex one and altruism predicts a constant level after the initial drop from period one
- \Rightarrow only 25% of subjects behave in accordance with reputation building on the individual level (e.g., defection in the last period, no cooperation following defection)

Suggested Literature

- Charles A Holt. *Markets, games, & strategic behavior*. Boston Pearson Addison Wesley, 2007 [Chapters 3.1–3.2]
- Robert Axelrod. More effective choice in the prisoner's dilemma. *The Journal* of Conflict Resolution, 24(3):379–403, 1980
- Russell Cooper, Douglas V. DeJong, Robert Forsythe, and Thomas W. Ross. Cooperation without reputation: Experimental evidence from prisoner's dilemma games. *Games and Economic Behavior*, 12(2):187 218, 1996
- * James Andreoni and John H. Miller. Rational cooperation in the finitely repeated prisoner's dilemma: Experimental evidence. *The Economic Journal*, 103(418):570–585, 1993